471 research outputs found

    No Evidence for a Aystematic FEII Emission Line Redshift in Type 1 AGN

    Full text link
    We test the recent claim by Hu et al. (2008) that FeII emission in Type 1 AGN shows a systematic redshift relative to the local source rest frame and broad-line Hbeta. We compile high s/n median composites using SDSS spectra from both the Hu et al. sample and our own sample of the 469 brightest DR5 spectra. Our composites are generated in bins of FWHM Hbeta and FeII strength as defined in our 4D Eigenvector 1 (4DE1) formalism. We find no evidence for a systematic FeII redshift and consistency with previous assumptions that FeII shift and width (FWHM) follow Hbeta shift and FWHM in virtually all sources. This result is consistent with the hypothesis that FeII emission (quasi-ubiquitous in type 1 sources) arises from a broad-line region with geometry and kinematics the same as that producing the Balmer lines.Comment: 12 pages, 1 table, 1 figure - accepted for publication in ApJ Letter

    Balmer line shifts in quasars

    Get PDF
    We offer a broad review of Balmer line phenomenology in type 1 active galactic nuclei, briefly sum- marising luminosity and radio loudness effects, and discussing interpretation in terms of nebular physics along the 4D eigenvector 1 sequence of quasars. We stress that relatively rare, peculiar Balmer line profiles (i.e., with large shifts with respect to the rest frame or double and multiple peaked) that start attracted attentions since the 1970s are still passable of multiple dynamical interpretation. More mainstream objects are still not fully understood as well, since competing dynamical models and geometries are possible. Further progress may come from inter-line comparison across the 4D Eigenvector 1 sequence.Comment: Accepted for publication in Astrophysics and Space Science, Special Issue on Line Shifts in Astrophysics and Laboratory Plasm

    Systematics of 2+ states in semi-magic nuclei

    Full text link
    We propose a simple systematics of low lying 2+ energy levels and electromagnetic transitions in semi-magic isotopic chains Z=28,50,82 and isotonic chains N=28,50,82,126. To this purpose we use a two-level pairing plus quadrupole Hamiltonian, within the spherical Quasiparticle Random Phase Approximation (QRPA). We derive a simple relation connecting the 2+ energy with the pairing gap and quadrupole-quadupole (QQ) interaction strength. It turns out that the systematics of energy levels and B(E2) values predicted by this simple model is fulfilled with a reasonable accuracy by all available experimental data. Both systematics suggest that not only active nucleons but also those filling closed shells play an important role

    High-Pressure Infiltration−Expulsion of Aqueous NaCl in Planar Hydrophobic Nanopores

    Get PDF
    Pressure-driven permeation of water in a poorly wettable material results in a conversion of mechanical work into surface free energy representing a new form of energy storage, or absorption. When water is replaced by a concentrated electrolyte solution, the storage capacity of a nanoporous medium becomes comparable to high-end supercapacitors. The addition of salt can also reduce the hysteresis of the infiltration/expulsion cycle. Our molecular simulations provide a theoretical perspective into the mechanisms involved in the process, and underlying structures and interactions in compressed nanoconfined solutions. Specifically, we consider aqueous NaCl in planar confinements of widths of 1.0 nm and 1.64 nm and pressures of up to 3 kbar. Open ensemble Monte Carlo simulations utilizing fractional exchanges of molecules for efficient additions/removal of ions have been utilized in conjunction with pressure-dependent chemical potentials to model bulk phases under pressure. Confinements open to these pressurized bulk, aqueous electrolyte phases show reversibility at narrow pore sizes, consistent with experiment, as well as strong hysteresis at both pore size. The addition of salt results in significant increases in the solid/liquid interfacial tension in narrower pores and associated infiltration and expulsion pressures. These changes are consistent with strong desalination effects at the lower pore size observed irrespective of external pressure and initial concentration

    Molecular Polarizability in Open Ensemble Simulations of Aqueous Nanoconfinements under Electric Field

    Get PDF
    Molecular polarization at aqueous interfaces involves fast degrees of freedom that are often averaged-out in atomistic-modeling approaches. The resulting effective interactions depend on a specific environment, making explicit account of molecular polarizability particularly important in solutions with pronounced anisotropic perturbations, including solid/liquid interfaces and external fields. Our work concerns polarizability effects in nanoscale confinements under electric field, open to an unperturbed bulk environment. We model aqueous molecules and ions in hydrophobic pores using the Gaussian-charge-on-spring BK3-AH representation. This involves nontrivial methodology devel- opments in expanded ensemble Monte Carlo simulations for open systems with long-ranged multibody interactions and necessitates further improvements for efficient modeling of polarizable ions. Structural differences between fixed-charge and polarizable models were captured in molecular dynamics simulations for a set of closed systems. Our open ensemble results with the BK3 model in neat-aqueous systems capture the ∌10% reduction of molecular dipoles within the surface layer near the hydrophobic pore walls in analogy to reported quantum mechanical calculations at water/vapor interfaces. The polarizability affects the interfacial dielectric behavior and weakens the electric-field dependence of water absorption at pragmatically relevant porosities. We observe moderate changes in thermodynamic properties and atom and charged-site spatial distributions; the Gaussian distribution of mobile charges on water and ions in the polarizable model shifts the density amplitudes and blurs the charge-layering effects associated with increased ion absorption. The use of polarizable force field indicates an enhanced response of interfacial ion distributions to applied electric field, a feature potentially important for in silico modeling of electric double layer capacitors

    Transition from the Seniority to the Anharmonic Vibrator Regime in Nuclei

    Get PDF
    A recent analysis of experimental energy systematics suggests that all collective nuclei fall into one of three classes -- seniority, anharmonic vibrational, or rotational -- with sharp phase transitions between them. We investigate the transition from the seniority to the anharmonic vibrator regime within a shell model framework involving a single large j-orbit. The calculations qualitatively reproduce the observed transitional behavior, both for U(5) like and O(6) like nuclei. They also confirm the preeminent role played by the neutron-proton interaction in producing the phase transition.Comment: 9 pages with 2 tables, submitted to Physical Review C, November 199

    Possible experimental signature of octupole correlations in the 02+^+_2 states of the actinides

    Full text link
    JπJ^{\pi}= 0+^+ states have been investigated in the actinide nucleus 240{}^{240}Pu up to an excitation energy of 3 MeV with a high-resolution (p,t) experiment at EpE_{p}= 24 MeV. To test the recently proposed JπJ^{\pi}= 02+^+_2 double-octupole structure, the phenomenological approach of the spdf-interacting boson model has been chosen. In addition, the total 0+^+ strength distribution and the 0+0^+ strength fragmentation have been compared to the model predictions as well as to the previously studied (p,t) reactions in the actinides. The results suggest that the structure of the 02+^+_2 states in the actinides might be more complex than the usually discussed pairing isomers. Instead, the octupole degree of freedom might contribute significantly. The signature of two close-lying 0+^+ states below the 2-quasiparticle energy is presented as a possible manifestation of strong octupole correlations in the structure of the 02+^+_2 states in the actinides.Comment: 6 pages, 5 figures, published in Phys. Rev. C 88, 041303(R) (2013

    Long-term urbanization dynamics and the evolution of green/blue areas in eastern europe: Insights from Romania

    Get PDF
    Urbanization is a dynamic process performed at the expense of natural and/or semi-natural areas, with direct impacts on the ecosystem services provided to human society. The increasing population density in urban areas and the associated demand for housing and public services have led to progressive changes in the structure, architecture, and design of urban areas. The present study analyzes long-term urban development in Western Romania, focusing on green/blue areas’ strategies in Timisoara over centuries. The empirical results of a literature review carried out with a historical perspective have delineated the time periods that favored “urban green development” (1716–1918 and 1918–1940) and those restricting their development (1940–2000), as well as the factors that influenced long-term urbanization dynamics and the evolution of green/blue areas. These factors can be generalized to other socioeconomic contexts in Eastern Europe. Characteristic issues of this geographical area impacting the evolution of urban green/blue areas include (i) common historical aspects (e.g., the influence of geo-political and strategic dimensions, the dominations of former great empires such as the Turkish empire and the communist period) and (ii) population migration after 1990

    On the origin of X-shaped radio-sources: new insights from the properties of their host galaxies

    Get PDF
    A significant fraction of extended radio sources presents a peculiar X-shaped radio morphology: in addition to the classical double lobed structure, radio emission is also observed along a second axis of symmetry in the form of diffuse wings or tails. We re-examine the origin of these extensions relating the radio morphology to the properties of their host galaxies. The orientation of the wings shows a striking connection with the structure of the host galaxy as they are preferentially aligned with its minor axis. Furthermore, wings are only observed in galaxies of high projected ellipticity. Hydrodynamical simulations of the radio-source evolution show that X-shaped radio-sources naturally form in this geometrical situation: as a jet propagates in a non-spherical gas distribution, the cocoon surrounding the radio-jets expands laterally at a high rate producing wings of radio emission, in a way that is reminiscent of the twin-exhaust model for radio-sources.Comment: 7 pages, 6 figures, 1 table, accepted for publication in A&
    • 

    corecore